
IF-TH-1 
TE-Mode Propagation Properties of the Coupled Planar Kerr-Like 

Nonlinear Waveguides 
Jian-Guo Ma 

School of Electrical and Electronic Engineering, Nanyang Technological University, 
Nanyang Avenue, -Singapore 639798 

Abstract - For the first time, a closed form expression of 
coupled Kerr-like nonlinear planar waveguides is derived for 
both guided and surface waves. The wave propagation 
properties along the Kerr-like nonlinear wavegudies are 
investigated analytically. The results show that the 
propagation properties depend on the permitted 
transmission powers and the initial excitation conditions. All 
the possible solutions can co-exist in the waveguide 
structures without mode-coupling. 

I. INTRODUCTION 

Intensity dependent phenomena in nonlinear 
dielectric structures have attracted a great deal of 
in&rest in the past decade because nonlinear guided 
waves have potential, yet not fully explored, 
applications to optical signal processing for high- 
speed communications and computing [ 1 - 171. 
While the intensity dependent nonlinear phenomena 
have been observed in semiconductor multiplayer 
systems, e.g. a sequence of GaAs-AlAs films 
exhibits very strong intensity dependent nonlinearity 
[161- 
The guided nonlinear TE modes in a single slab 
Kerr-like nonlinear waveguide have been intensively 
investigated [ 1 - 161 numerically. Nonlinear surface 
waves on the interfaces of two nonlinear media have 
also been investigated [ 14,171. However, to the 
author’s knowledge, no any theoretical analysis in 
coupled kerr-like nonlinear planar waveguide has 
been systematically studied in the literature. In this 
paper, the TE-mode properties in coupled Kerr-like 
nonlinear planar waveguide structures are 
analytically investigated using the closed-form 
expression for the first time. 

II. THEORY 

The structure is shown in Fig. 1, regions I, III and 
V are linear media and regions II and IV are Kerr- 
like nonlinear media with nonlinear coefficient c12 
and a4 respectively. The propagation direction is z- 

direction with the form ejB, where p is the 
propagation constant. The structure is uniform in y- 

direction, thus, 2 = 0. For TE waves, E, = 0. From 
ay 

the Maxwell’s equations it is known that now E, = 0. 
Only E, component of the electric field is non-zero. 
Let E = E,. 

t 

h 

Fig. 1 The structure of a coupled Kerr-like nonlinear 
planar waveguide. 

The wave equation is now [ 1 - 171: 
d2E 
-+k&, -V)E =0 
dx2 
with 

x2d 

,c2 +a2E2 d<xSd(l+b’,) 

Er = Es Ix/Id 

c4 +a4E2 -d2x2-d(l+S,) 

Es x2-d(l+S,) 

Regions I, III and V are linear and the solutions in 
these regions are well-known as: 

(1) 
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Region I: 

E(x) = E, exp[-k,,dJV-E,(A- 
d(l+4) 

01 (2) 

Region III: 

E(x) = 
A, cos(k,x) + B, sin(&x) 

A, cosh(k3x) + B, sinh(&x) 

with 
k; =k;(&) -V) &j >v 

i-j =ki(v-E3) E3 <v 
Region V: 

E(x) = E, exp[k,,d,/V - .zs (---rr--- 
4+6,) 

+ 01 

W 

(3b) 

(4) 

Regions II and IV are nonlinear slabs, when V>E~ 
and meanwhile V%J, the closed-form analytical 
solution can be found as: 
Region II: 

E(x)= I A2 (5) 

cosh[ 
J 

4A2 (k,d) y] 

and region IV: 

E(x) = I A4 (6) 

cosh[ 
J 

%A4 (k,d) y] 

Where x2 and x4 are constants determined by the 
initial conditions. Parameter V must satisfy the 
condition simultaneously: 

1 1 --a,A,2 +.c2 =V=--a,A,2 +s4 
2 2 

(7) 

On the interfaces x=d(l+bi); x=z!z$ x=-d(Z+@, the 
electromagnetic field components E, and H, must be 
continuous. Using equations (2) - (7), the dispersion 
equation can be obtained. Here only the symmetrical 
case is presented because of the pager limitation. 

III. RESULTS AND DISCUSSIONS 
The symmetrical coupled Kerr-like nonlinear 
waveguides are studied in details because of the page 
constrains. The general solutions for other cases can 
be obtained from (1) - (7) straightforward. 
Symmetrical coupled Kerr-like nonlinear guides: 

E2 =E4 =&,, a2 =a4 =a, A, =A, =A 

El = 85, 82 =s4 

We can get 
x2=x4=0 

tanh -’ p-E1 

k,d = 

V=($’ =;A2 +E, 

(8) 

It is obviously that the dispersion relationship 
depends on the nonlinearity, the electric field 
magnitude and the material. Paticularly, the 
propagation wavenumber determined by (8) and the 
dispersion determined by (9) are independent from 
the material parameter ~3 of region III. 
Fig. 2 indicates that for different thickness of the 
nonlinear slabs only the field magnitudes on the 
curves can exist in the waveguide structure. 
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Fig. 2 Dispersion vs the field strength for different thickness of 
the nonlinear slabs. The solid-line is the curve V, and the 

symbols are the curves of k,,d - JO.SaA . 

Only those modes that satisfy (8) and (9) can 
propagate along the guides. It is not like the linear 
guides, where there are no any limitations on the 
field magnitudes. However, for a nonlinear coupled 
waveguide structure, the permitted modes depend not 
only on the material parameters, but also on the field 
strengths. For given materials parameters and the 
nonlinear coefficient, each given field magnitude has 
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only one particular operating frequency and 
propagation constant p. If the field magnitude A 
changes, the propagation constant and the operating 
frequency will change also accordingly. 

And the field distributions in the regions are: 
Region I: 

E(x) 
exp[-k,dJV-E,(L 

dO+6) 
- l>l 

-= 
A 

cosh[ 

Region II: 
E(x) 1 -= 

A 

Region III: 
E(x) 

A 
cosh[ 

cos(k,d&, -V) 

cosh&,ddG$) 

cosh(k,d,/G) 

Region IV: 

Rx) 1 -= 
A 

cosh[ 

Region V: 

&j >v 

v > &J 

E(x) 
exp[k,d,/~( ’ ---+Ol 

41+4 -= 
A 

cosh[ 

(104 

(lob) 

(1Oc) 

(104 

(104 

For each given magnitude and the nonlinear coefficient, 
there is only one unique pair of k,,d and pd. That means 
that different initial excitation of the field will propagate 
in different velocity. All modes with different magnitudes 
and velocities can co-exist in the guided structure without 
cross-talk effects, because of the nonlinear effects. 
Suppose there are two modes existing in the structure, 
because only mode 1 and mode 2 can meet the wave 
equation (1) simultaneously, while mode 1 + mode 2 is 
not the solution of(l), mode 1 will not affect the behavior 
of the mode 2, vice versa. Therefore, nonlinear waveguide 
can be used to guide multi-mode propagations without 
mode-cross-coupling. 
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Fig. 3 The dispersion curves for different field magnitude and 
the thickness of the slabs. Solid-lines: bd; Symbols: pd. 
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Fig. 4 The elkctric field distributions for different magnitudes, V, 
and bd. Curve 1: V=5.5678 and bd=O.3469; Curve 2: F4.078 
and bd=O.523; Curve 3: V=2.9889 and k,,d=1.1981; 

The field distributions of the guided waves for different 
magnitudes, V and kod are depicted in 

Fig. 4. For different propagation properties the field 
distributions are also different. While the surface waves 
are given in Fig. 5. 
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Fig. 5 The electric field distributions of the surface waves for 
different initial magnitudes, V, and lgd. From top to bottom: 
V=83.8, 9.75, 5.57, 4.08, 1.58 and ksd=0.06, 0.21, 0.35, 0.52, 
0.49. 

V. CONCLUSION 

In this paper, TE waves in the structure consisting of 
TWO nonlinear Kerr-like slabs sandwiched in three linear 
media are studied analytically. Closed-form expressions 
for the dispersion relations as well the allowed wave- 
numbers of the TE waves are obtained for the first time. If 
the initial condition determines that the field maximum 
position is in the middle of the coupling structure, the 
substrate and clad linear media must have the same 
dielectric constant, and the two nonlinear media are 
identical. For given the value of the magnitude of the field 
strength only one mode with the particular operating 
frequency and the related propagation constant can be 
existed in the structure having the corresponding wave 
velocity. In addition, field distributions, propagation 
constant, maximum value of the field strength as well the 
operating frequency are dependent upon each other. The 
larger the magnitude of the wave is, the faster the wave 
will propagate. These results are useful for designing 
possible new devices based on the Kerr-like nonlinear 
waveguide structures. 
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