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Abstract — For the first time, a closed form expression of
coupled Kerr-like nonlinear planar waveguides is derived for
both guided and surface waves. The wave propagation
properties along the Kerr-like nonlinear wavegudies are
investigated analytically. The results show that the
propagation properties depend on the permitted
transmission powers and the initial excitation conditions. All
the possible solutions can co-exist in the waveguide
structures without mode-coupling.

I. INTRODUCTION

Intensity dependent phenomena in nonlinear
dielectric structures have attracted a great deal of
interest in the past decade because nonlinear guided
waves have potential, yet not fully explored,
applications to optical signal processing for high-
speed communications and computing [1 - 17].
While the intensity dependent nonlinear phenomena
have been observed in semiconductor multiplayer
systems, e.g. a sequence of GaAs-AlAs films
exhibits very strong intensity dependent nonlinearity
[16].

The guided nonlinear TE modes in a single slab
Kerr-like nonlinear waveguide have been intensively
investigated [1 — 16] numerically. Nonlinear surface
waves on the interfaces of two nonlinear media have
also been investigated [14,17]. However, to the
author’s knowledge, no any theoretical analysis in
coupled kerr-like nonlinear planar waveguide has
been systematically studied in the literature. In this
paper, the TE-mode properties in coupled Kerr-like
nonlinear  planar  waveguide structures are
analytically investigated using the closed-form
expression for the first time.

II. THEORY

The structure is shown in Fig.1, regions I, IIT and
V are linear media and regions II and IV are Kerr-
like nonlinear media with nonlinear coefficient o,
and ay respectively. The propagation direction is z-

0-7803-7239-5/02/$10.00 © 2002 IEEE

direction with the form 7%, where £ is the
propagation constant. The structure is uniform in y-

direction, thus, i = 0. For TE waves, E, = 0. From

the Maxwell’s equations it is known that now E, = 0.
Only E, component of the electric field is non-zero.
Let E=E,.

Fig. 1 The structure of a coupled Kerr-like nonlinear
planar waveguide.

The wave equation is now [1-17]:
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Regions I, IIl and V are linear and the solutions in
these regions are well-known as:
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Region I:

E(x) = E; expl—kodyV - &) (5= i 52 -0 @
Region III:
B = {A, cos(kix) + B, sir?(kyi) )
A cosh(kyx) + By sinh(k;x)
with
ki =kl (e3-V) &>V (3b)
k2 =k (V -&) &<V
Region V:
E()= By explkod P55 (———+1)] ()
d(+ 54)

Regions II and IV are nonlinear slabs, when V>¢g,
and meanwhile V>g,, the closed-form analytical
solution can be found as:

Region II:
E(x)= 4 &)
cosh] fzz—Az(kOd) ikl
and region IV:
E(x)= 44 (6)
coshf %“—A4 (kod) 2475

Where x, and x, are constants determined by the
initial conditions. Parameter V must satisfy the
condition simultaneously:
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On the interfaces x=d(1+3&); x=2d; x=-d(1+7), the
electromagnetic field components E, and H, must be
continuous. Using equations (2) — (7), the dispersion
equation can be obtained. Here only the symmetrical
case is presented because of the pager limitation.

III. RESULTS AND DISCUSSIONS
The symmetrical coupled Kerr-like nonlinear
waveguides are studied in details because of the page
constrains. The general solutions for other cases can
be obtained from (1) — (7) straightforward.
Symmetrical coupled Kerr-like nonlinear guides:

E,=64=6,, ay=ay=a, Ay=4,=4
& =85, O,=0,

We can get

‘x;=x4=0

tanh ™!
(1+0),/—4
kod = (8)
o
(1+90) —2—A
_ _ﬁ_z__ﬁ 2
V"(ko) "2A +€r (9)

It is obviously that the dispersion relationship
depends on the nonlinearity, the electric field
magnitude and the material.  Paticularly, the
propagation wavenumber determined by (8) and the
dispersion determined by (9) are independent from
the material parameter €; of region III.

Fig. 2 indicates that for different thickness of the
nonlinear slabs only the field magnitudes on the
curves can exist in the waveguide structure.
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Fig. 2 Dispersion vs the field strength for different thickness of
the nonlinear slabs. The solid-line is the curve V, and the

symbols are the curves of kod ~ v0.524.

Only those modes that satisfy (8) and (9) can
propagate along the guides. It is not like the linear
guides, where there are no any limitations on the
field magnitudes. However, for a nonlinear coupled
waveguide structure, the permitted modes depend not
only on the material parameters, but also on the field
strengths. For given materials parameters and the
nonlinear coefficient, each given field magnitude has
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only one particular operating frequency and
propagation constant B. If the field magnitude A

changes, the propagation constant and the operating.

frequency will change also accordingly.
And the field distributions in the regions are:
-D]

Region I:
xp[—kodV —&
exp[—ky l(!(l +5)
(10a)

coshf A(l + ) (kod)]

E (x)
A

Region II:

20 ! (10b)

a x
shi,|—A(k,d)—
°°[2(o)d]

Region III:
E(x) _ 1

X

cosh( A(1+ 8)(kod)]
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LG ‘ (10d)
cosh| A(kod) ]

(10c)

£3>V

V>€3

Region V:

E (x

exp[kod,/V & (——— .
d(l é)
(10e)

cosh[ A(1+ 8)(kod)]

For each given magmtude and the nonlinear coefficient,
there is only one unique pair of kod and Bd. That means
that different initial excitation of the field will propagate
in different velocity. All modes with different magnitudes
and velocities can co-exist in the guided structure without
cross-talk effects, because of the nonlinear effects.
Suppose there are two modes existing in the structure,
because only mode 1 and mode 2 can meet the wave
equation (1) simultaneously, while mode 1 + mode 2 is
not the solution of (1), mode 1 will not affect the behavior
of the mode 2, vice versa. Therefore, nonlinear waveguide
can be used to guide multi-mode propagations without
mode-cross-coupling.
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Fig. 3 The dispersion curves for different field magnitude and
the thickness of the slabs. Solid-lines: kod; Symbols: Bd.

Fig. 4 The electric field distributions for different magnitudes, V,
and kod. Curve 1: V=5.5678 and kyd=0.3469; Curve 2: V=4.078
and kod=0.523; Curve 3: V=2.9889 and kyd=1.1981;

The field distributions of the guided waves for different
magnitudes, V and kod are depicted in

Fig. 4. For different propagation properties the field
distributions are also different. While the surface waves
are given in Fig. 5.
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Fig. 5 The electric field distributions of the surface waves for
different initial magnitudes, V, and k¢d. From top to bottom:
V=83.8, 9.75, 5.57, 4.08, 1.58 and k,d=0.06, 0.21, 0.35, 0.52,
0.49.

V. CONCLUSION

In this paper, TE waves in the structure consisting of
TWO nonlinear Kerr-like slabs sandwiched in three linear
media are studied analytically. Closed-form expressions
for the dispersion relations as well the allowed wave-
numbers of the TE waves are obtained for the first time. If
the initial condition determines that the field maximum
position is in the middle of the coupling structure, the
substrate and clad linear media must have the same
dielectric constant, and the two nonlinear media are
identical. For given the value of the magnitude of the field
strength only one mode with the particular operating
frequency and the related propagation constant can be
existed in the structure having the corresponding wave
velocity. In addition, field distributions, propagation
constant, maximum value of the field strength as well the
operating frequency are dependent upon each other. The
larger the magnitude of the wave is, the faster the wave
will propagate. These results are useful for designing
possible new devices based on the Kerr-like nonlinear
. waveguide structures.
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